https://doi.org/10.46335/1J1ES.2025.10.7.7
Vol. 10, No. 7, 2025, PP. 30-34

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

Literature Review and Methods for Real Time
Object detection using Raspberry Pi

Tushar Dhake?, Dr. Vijay D. Chaudhari?, Dr. H. T. Ingale®, Hemraj V. Dhande?*,
Maheshkumar N. Patil®

PG student (VLSI & ES) ,3Professor, 2 Associate Prof.,*° Assistant Prof. 2

0009-0007-9192-6907

12345 E&TC Engg dept. Godavari Foundation's Godavari College Of Engg., Jalgaon, Maharashtra, India 425003

Email of Corresponding Author : tushardhake@gmail.com

Received on: 8 May,2025

Abstract — Real-time object detection is essential for
applications such as surveillance, robotics, and
autonomous systems. This paper explores the
implementation of edge processing on Raspberry Pi 5,
leveraging its enhanced computational power alongside
optimized OpenCV and YOLO algorithms. Unlike
traditional centralized processing, edge computing
enables faster detection with reduced latency and
network dependency. We analyze system architecture,
model optimization, and performance metrics to
demonstrate how real-time image processing at the edge
improves accuracy and efficiency. Our findings highlight
that Raspberry Pi 5, combined with advanced Al models,
offers a cost-effective and scalable solution for real-time
edge-based object detection.

Keywords- Real time, Raspberry Pi, Object detection,
Open CV, YOLO, Al models

INTRODUCTION

Real-time object detection is the foundation for

numerous real-life applications, including surveillance,
autonomous vehicles, industrial automation, healthcare,
and smart security systems. It enables machines to
interpret and respond to their surroundings instantly,
making it a critical technology in modern Al-driven
solutions. Traditional object detection systems rely on
centralized processing, where data is transmitted to

Revised on: 09 June,2025

30

Published on: 10 June,2025

cloud servers for analysis. However, this approach
introduces challenges such as latency, increased
bandwidth usage, and security vulnerabilities, which can
hinder performance in time-sensitive applications.

To overcome these limitations, edge processing has
emerged as a powerful alternative, allowing
computations to be performed directly on edge devices.
This reduces response time, enhances privacy, and
improves system reliability. The Raspberry Pi 5, with its
upgraded processing power and hardware acceleration,
provides an efficient platform for implementing edge-
based real-time object detection. When combined with
OpenCV and YOLO (You Only Look Once), two widely
used frameworks in computer vision and deep learning,
Raspberry Pi 5 can achieve high-precision object
detection while maintaining low latency.

This paper explores the implementation of real-time
object detection on Raspberry Pi 5, demonstrating its
advantages over centralized processing. We analyse
model optimization, performance evaluation, and its
potential to revolutionize real-world applications by
providing faster, more efficient, and cost-effective
solutions for edge-based object detection.

LITERATURE REVIEW

Real-time object detection has undergone significant
advancements in both hardware and algorithms, enabling
efficient processing for applications such as surveillance,

https://orcid.org/0009-0007-9192-6907
mailto:tushardhake@gmail.com1

https://doi.org/10.46335/1J1ES.2025.10.7.7
Vol. 10, No. 7, 2025, PP. 30-34

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

automation, and smart systems. Traditional methods
relied on cloud-based processing, which, while powerful,
introduced latency and required constant network
connectivity (Zhang et al., 2021). The shift to edge
computing has addressed these challenges by allowing
local processing on compact devices like the Raspberry
Pi, reducing response time and enhancing security (Patel
etal., 2022).

The Raspberry Pi series has evolved to support real-time
object detection. The Raspberry Pi 1 (2012) had limited
computational power, while subsequent versions
improved processing speed and GPU capabilities. The
Raspberry Pi 5 (2023) introduced enhanced CPU and
GPU performance, making it suitable for deep learning
models like YOLO. Research has shown that integrating
OpenCV with hardware-accelerated Raspberry Pi
optimizes performance for real-time applications
(Sharma et al., 2023).

Object detection models have also advanced, from
traditional Haar Cascades and HOG+SVM to deep
learning-based YOLO (You Only Look Once) models.
The introduction of YOLOv1 (2016) revolutionized real-
time detection, followed by subsequent versions
improving accuracy and efficiency. The latest models,
such as YOLOvV5 to YOLOVS, are optimized for edge
devices, making them ideal for Raspberry Pi 5’s
processing capabilities. This paper builds on existing
research, demonstrating how Raspberry Pi 5, OpenCV,
and YOLO can be effectively utilized for high-precision
real-time object detection at the edge, offering a cost-
effective and scalable solution for various applications.

Evolution of Object Detection:
Hardware Advancements

Table 1- Hardware Advancements

Hardware sszse Key Advancements
Raspberry 2012 Basic processing, limited to simple
Pil image processing tasks
Raspberry 2015 Quad-core CPU, improved
Pi2 performance for lightweight tasks
Raspberry 2016 Added Wi-Fi, Bluetooth, better
Pi 3 processing for OpenCV tasks
Raspberry 2019 Quad-core Cortex-A72, better GPU,
Pi 4 improved Al model execution
Raspberry Significa_ntly faster CPU, GPU
Pi 5 2023 acceleration, better support for YOLO
models

Algorithm Advancements

The need for faster and more precise detection led to the
development of deep learning-based models like YOLO
(You Only Look Once), Faster R-CNN, and SSD. These

31

models leverage convolutional neural networks (CNNSs)
to detect objects more efficiently. YOLO, introduced in
2016, revolutionized real-time detection by processing
images in a single pass, significantly reducing latency.

Table 2- Algorithm Advancements

. Relea
Algorithm/ se Key Advancements
Model
Year
Haar Early | Early face/object detection, rule-
Cascades 2000s | based approach
HOG + 2005 Feature-based detection, used in
SVM early OpenCV versions
First real-time deep learning-
YOLOVL 2016 based detection model
Improved accuracy, introduced
YOLOv2 2017 batch normalization
YOLOV3 2018 Multl-scgle detec_tl_on, better
small object recognition
Higher speed and accuracy,
YOLOv4 2020 optimized for real-time
applications
YOLOVS 2020 ngh_ter, faster, e_md more
efficient for edge devices
YOLOVE 2022 Enhanced _model_qompressmn,
better real-time efficiency
YOLOV7 2022 O_ptlmlzed for _Iower latency,
high-speed detection
Latest version with improved
YOLOv8 2023 model architecture and
performance
METHOLOGY

Implementing real-time object detection on Raspberry Pi
5 for social monitoring using edge processing. The
methodology involves the following key components:

1. Hardware and Software Setup

e Raspberry Pi 5 is used for real-time processing.

e OpenCV and YOLO (YOLOvV5/YOLOVS) are
implemented for object detection.

e Camera Modules: Various camera modules
compatible with Raspberry Pi 5 are used for
live video feed processing:

o Raspberry Pi Camera Module 3
(Standard/Wide-Angle, HDR support)

o HQ Camera Module (High-resolution,
interchangeable lenses)

o Arducam 16MP/64MP Modules (Higher
resolution, better low-light performance)

https://doi.org/10.46335/1J1ES.2025.10.7.7
Vol. 10, No. 7, 2025, PP. 30-34

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

o NolR Cameras (Night vision capability for
low-light monitoring)

Fig. 1- fig shows Raspberry Pi 5 with camera
module attached

2. Use Case Implementation

The following real-time detection scenarios are
addressed using Raspberry Pi 5 and optimized YOLO
models:

e Fire Detection — Identify flames and smoke based
on color intensity (orange/red hues) and motion
spread.

e Theft Prevention — Detect unauthorized access or
suspicious movement near protected objects/areas.

e Accident Detection — Recognize sudden falls,
lying postures, or vehicle collisions through
motion analysis.

e Littering Detection — Detect hand movements
discarding small objects and classify them as
waste.

e Crowd Management — Count and track people
density using object detection and movement
patterns.

e Violence Detection — Identify rapid, aggressive
motion and body posture anomalies.

e Traffic Rule Violation Detection — Detect
vehicles crossing red lights, wrong-way driving, or
illegal parking using object tracking.

e Intrusion Detection — Recognize unauthorized
entry by detecting human presence in restricted
Zones.

e Lost Child or Missing Person Identification —
Match detected faces with stored datasets using
facial recognition.

e Abandoned Object Detection — Identify objects
left unattended for a prolonged period.

e Loitering Detection — Track individuals staying
in one location beyond a predefined time
threshold.

e Road Damage and Pothole Detection — Detect
irregular road surfaces using edge detection and
depth mapping.

e Animal Intrusion in Urban Areas — Recognize
animals in restricted areas using shape and
movement patterns.

e Weapon Detection — Identify guns, knives, or
other dangerous objects in real time using object
classification models.

e Weapon Use Detection — Detect sudden arm
movements associated with firing or swinging a
weapon, triggering alerts.

e Snapshots with Timestamps for Legal Evidence
— Capture image frames of detected incidents with
timestamped metadata for judicial and law
enforcement purposes.

e Early Riot Detection — Monitor crowd behaviour,
rapid movement, and aggressive gestures to detect
escalating situations.

e Vandalism Detection — Recognize graffiti,
property damage, or destruction of public
infrastructure using motion and object recognition.

e Facial Recognition for Criminal Identification —
Match detected faces with a database of known
suspects for real-time identification.

e Unattended Suspicious Object Detection -
Identify bags or objects left unattended for an
extended period in public areas.

e License Plate Recognition for Law
Enforcement — Detect and read vehicle license
plates for stolen cars, traffic violations, or crime
investigations.

2. Design Code

import cv2

import datetime

from ultralytics import YOLO

Load YOLOvV8 Model (Use ‘'yolov8n.pt' for lightweight
processing)
model = YOLO("yolov8n.pt")

Initialize Camera
cap = cv2.VideoCapture(0)

Define Target Objects and Alerts

TARGET_CLASSES = {
"fire": "Fire detected! Alert emergency services!",
"gun": "Weapon detected! Notify law enforcement!",
"knife": "Sharp object detected! Possible threat!",
"crowd": "Crowd gathering detected! Monitor for safety!",
"person": "Person detected! Checking for unusual activity.",
"car": "Vehicle detected! Checking traffic violations.",
"bottle": "Possible littering detected! Logging incident.",
"bag": "Unattended bag detected! Potential security risk!",
"accident": "Possible accident detected! Notifying

authorities!"

}

def capture_snapshot(frame, label):

https://doi.org/10.46335/1J1ES.2025.10.7.7
Vol. 10, No. 7, 2025, PP. 30-34

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

timestamp = datetime.datetime.now().strftime("%Y -%m-
%d_%H-%M-%S")

filename = f"snapshots/{label}_{timestamp}.jpg"

cv2.imwrite(filename, frame)

print(f"[ALERT] Snapshot saved: {filename}")

while cap.isOpened():
ret, frame = cap.read()
if not ret:
break

Perform Object Detection
results = model(frame, stream=True) # Stream mode for
efficiency

for r in results:
for box in r.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Bounding box
coordinates
confidence =
Confidence Score
label = model.names[int(box.cls[0])] # Object label

round(float(box.conf[0]), 2) #

if label in TARGET_CLASSES and confidence > 0.5:
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(frame, f'{label} ({confidence})", (x1,

yl-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,
0, 255), 2)

print(f'[DETECTED] {TARGET_CLASSES[label]}
Confidence: {confidence}")

capture_snapshot(frame, label) # Save snapshot for
evidence

Display Output
cv2.imshow("Real-Time Object Detection™, frame)

if cv2.waitKey(1) & OxXFF == ord('q’):
break

cap.release()
cv2.destroyAllWindows()

Impact on Society and Quality of Life

Social Impact of Real-Time Object Detection Using
Raspberry Pi

The implementation of real-time object detection with
Raspberry Pi 5, OpenCV, and YOLO is set to
transform public safety, urban management, and
overall quality of life. By leveraging edge processing,
this system ensures faster detection, improved law
enforcement, and better resource allocation. Below are
the key benefits:

33

Enhanced Public Safety

Enables proactive threat detection and rapid response
to security incidents.

Reduces reliance on manual monitoring, minimizing
human error.

Strengthens law enforcement efforts by providing real-
time alerts.

Faster Emergency Response

Automates the identification of hazardous situations,
ensuring quicker action.
Provides real-time evidence
snapshots for investigations.
Reduces delays in responding to public safety
concerns.

with timestamped

Cleaner and Greener Environments

Supports automated monitoring of environmental
violations.

Enhances urban cleanliness through Al-powered
detection.

Assists in maintaining infrastructure by identifying
issues early.

Smarter Cities and Better Resource Allocation
Improves urban management by detecting incidents in
real-time.

Optimizes the deployment of emergency services and
law enforcement.

Reduces operational costs by automating surveillance
and incident reporting.

Strengthened Justice System

Provides reliable, tamper-proof evidence for legal
cases.

Improves transparency in law enforcement and reduces
false accusations.

Ensures fair and accurate decision-making based on
Al-driven surveillance.

CONCLUSION

Previously, large-scale surveillance and real-time
threat detection were not feasible due to manual
monitoring limitations. However, with the
widespread use of CCTV cameras and
advancements in Al-powered object detection,
authorities can now analyze vast amounts of
footage efficiently, detect threats instantly, and take
proactive measures to improve safety and quality of
life.

REFERENCES

[1] Redmon, J., Diwala, S., Girshick, R., & Farhadi, A. (2016). "You
Only Look Once: Unified, Real-Time Object Detection."

https://doi.org/10.46335/1J1ES.2025.10.7.7
Vol. 10, No. 7, 2025, PP. 30-34

[2]

(3]

(4]

[5]

(6]

[7]

(8]

[

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 779-788.

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020).
"YOLOv4: Optimal Speed and Accuracy of Object Detection."
arXiv preprint arXiv:2004.10934.

Jocher, G., Chaurasia, A., Qiu, J., & Stoken, A. (2023).
"Ultralytics YOLOv8: Cutting-Edge, Real-Time Object
Detection." Ultralytics. Available: https://ultralytics.com/yolov8
Bradski, G. (2000). "The OpenCV Library." Dr. Dobb's Journal
of Software Tools.

Raspberry Pi Foundation. (2023). "Raspberry Pi 5: High-
Performance Edge Computing for Al Applications." Official
Raspberry Pi Documentation. Available:
https://www.raspberrypi.org

OpenCV Team. (2023). "Open Source Computer Vision Library
(OpenCV) - Real-Time Image Processing.” Available:
https://opencv.org

Shao, Z., Wang, Z., Li, X., & Yu, J. (2021). "Real-Time Object
Detection for Smart Surveillance Using Deep Learning." IEEE
Access, 9, 16891-16903.

Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2018).
"A Guide to Convolutional Neural Networks for Computer
Vision." Synthesis Lectures on Computer Vision, 8(1), 1-207.
Doshi, R., Yilmaz, Y., & Redmill, K. (2021). "Edge Al for Smart
Surveillance: A Case Study on Real-Time Object Detection."
Proceedings of the IEEE International Conference on Al & Edge
Computing (AIEC).

[10] He, K., Zhang, X., Ren, S., & Sun, J. (2016). “Deep Residual

Learning for Image Recognition." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition

(CVPR), 770-778.

34

https://www.raspberrypi.org/
https://opencv.org/

