
https://doi.org/10.46335/IJIES.2025.10.6.5 e-ISSN: 2456-3463

Vol. 10, No. 6, 2025, PP. 23-27

International Journal of Innovations in Engineering and Science, www.ijies.net

23

Comparative Analysis of Kotlin, Kotlin

Multiplatform, Swift, Flutter, and React Native in

Cross-Platform App Development

Dr. Neha Gupta1, Atharva Gour2, Nishita Raghvendra3, Rohit Manna4,

1Deputy Director, Symbiosis University of Applied Sciences, Indore, India, 453112, 0000-0003-0052-2653

 2 Student, Symbiosis University of Applied Sciences, Indore, India, 453112, 2022btcs013@student.suas.ac.in,
3 Student, Symbiosis University of Applied Sciences, Indore, India, 453112, nishitaraghvendra@gmail.com,

4 Student, Symbiosis University of Applied Sciences, Indore, India, 453112, rohitmanna55@gmail.com

 Email of Corresponding Author: neha.gupta@suas.ac.in

 Received on: 28 April, 2025 Revised on: 02 June,2025 Published on: 06 June, 2025

Abstract –This paper investigates and compares five

prominent technologies in the modern app development

ecosystem: Kotlin (and its multi-platform extension),

Swift, Flutter, and React Native. The study examines

their application in mobile, watch, and laptop (desktop)

app development with respect to performance, speed,

compatibility, learning curve, and current as well as

future market demand. [1] [2] [3] [4] By analyzing both

technical attributes and ecosystem trends, this research

aims to provide developers and decision-makers with

insights into which framework or language might best

suit different project requirements.

Keywords- Kotlin, multi-platform extension, Swift,

Flutter, and React Native

INTRODUCTION

The rapid evolution of app development platforms has

resulted in a diverse range of languages and frameworks.

Traditionally, native development required separate

codebases for different platforms. [5] Today,

frameworks such as Kotlin Multiplatform, Flutter, and

React Native provide cross-platform capabilities, while

languages like Swift (for iOS/macOS) and Kotlin (for

Android and beyond) continue to be critical in native

environments. [6] [7] This study outlines the advantages

and trade-offs of each approach:

•

• Kotlin: A modern programming language

known for its expressiveness, safety, and strong

support on Android. [8]

• Kotlin Multiplatform (KMP): An extension

of Kotlin that enables code sharing across

platforms without sacrificing native

performance.

• Swift: Apple’s native language designed for

iOS, watchOS, and macOS, known for its

performance and seamless integration within

the Apple ecosystem.

• Flutter: Google’s UI toolkit that leverages the

Dart language to deliver high-performance,

visually appealing apps across mobile, web, and

desktop.

• React Native: A JavaScript-based framework

that allows developers to build cross-platform

mobile applications with a single codebase.

METHODOLOGY

Our comparative analysis is structured around the

following dimensions:

• Platform Domain: Mobile apps, watch apps,

and laptop/desktop apps.

• Performance: Runtime speed, memory

management, and UI responsiveness.

• Development Speed and Compatibility: Ease of

integration, native API support, and cross-

platform consistency.

https://orcid.org/0000-0003-0052-2653
mailto:2022btcs013@student.suas.ac.in
mailto:2023btcs001@student.suas.ac.in
mailto:rohitmanna55@gmail.com
mailto:neha.gupta@suas.ac.in

https://doi.org/10.46335/IJIES.2025.10.6.5 e-ISSN: 2456-3463

Vol. 10, No. 6, 2025, PP. 23-27

International Journal of Innovations in Engineering and Science, www.ijies.net

24

• Learning Curve and Ecosystem Demand:

Developer adoption, community support, and

projected market trends.

1. Platform Domain Support

Mobile Apps

• Kotlin & Kotlin Multiplatform:

◦ Kotlin is highly optimized for Android

native development.

◦ Kotlin Multi-platform allows sharing

business logic across Android and iOS

while still enabling native UI

implementation.

• Swift:

◦ Primarily used for iOS, watchOS, and

macOS, offering seamless integration

with Apple hardware.

• Flutter:

◦ Delivers a consistent UI across

Android and iOS using its own

rendering engine.

• React Native:

◦ Leverages native components to

provide a near-native look and feel on

both Android and iOS.

Watch Apps

• Kotlin/KMP:

◦ Currently less prevalent in watch app

development compared to native

solutions; Kotlin Multiplatform

projects may require additional

libraries for watchOS.

• Swift:

◦ The dominant language for watchOS

apps, offering deep integration with

Apple Watch features.

• Flutter & React Native:

◦ While both frameworks have growing

community efforts, native

development (Swift) remains the

standard due to performance and OS-

specific requirements.

Laptop/Desktop Apps

• Kotlin & Kotlin Multiplatform:

◦ Kotlin can target JVM-based desktop

applications. Kotlin Multiplatform

extends support to desktop

environments using shared logic and

native wrappers.

• Swift:

◦ Swift is extensively used in macOS

app development.

• Flutter:

◦ Recently expanded support for desktop

apps (Windows, macOS, Linux) with

promising performance.

• React Native:

◦ Primarily focused on mobile; however,

community-driven projects (e.g., React

Native for Windows/Mac) are

emerging but still less mature.

2. Performance, Speed, and Compatibility

Runtime Performance and Speed

• Kotlin (Native):

◦ Benefits from direct compilation to

JVM or native binaries; offers

excellent performance on Android.

• Kotlin Multiplatform:

◦ By sharing business logic while

maintaining native UI, it strives for

near-native performance on each

platform.

• Swift:

◦ Highly optimized for Apple devices,

delivering top performance and

efficient memory management.

• Flutter:

◦ Uses a high-performance rendering

engine (Skia) to ensure smooth

animations; however, some overhead

exists due to its abstraction layer.

• React Native:

◦ Offers acceptable performance by

bridging JavaScript with native code;

however, complex UIs and heavy

computations can sometimes

experience latency.

Compatibility

• Kotlin/KMP:

◦ Excellent for Android; KMP is

evolving to provide robust cross-

platform compatibility.

• Swift:

https://doi.org/10.46335/IJIES.2025.10.6.5 e-ISSN: 2456-3463

Vol. 10, No. 6, 2025, PP. 23-27

International Journal of Innovations in Engineering and Science, www.ijies.net

25

◦ Offers tight integration within the

Apple ecosystem.

• Flutter:

◦ Maintains consistent UI and behavior

across supported platforms.

• React Native:

◦ Leverages native UI components but

sometimes suffers from compatibility

issues with newer OS versions or

custom native modules.

Figure 1: Graphical Representation of Performance,

Speed and Compatibility of Languages/ Platform.

3. Learning Curve and Market Demand

Learning Speed

• Kotlin:

◦ Simple syntax and interoperability

with Java make it relatively easy for

developers with an Android

background.

• Kotlin Multiplatform:

◦ Introduces additional complexity in

managing shared code and platform-

specific modules.

• Swift:

◦ Designed to be modern and safe, but

its unique paradigms require time to

master for developers coming from

other languages.

• Flutter (Dart):

◦ Dart is easy to learn, and Flutter’s “hot

reload” speeds up the development

cycle.

• React Native (JavaScript/TypeScript):

◦ JavaScript’s ubiquity makes it

accessible; however, managing the

bridge between JS and native code can

add complexity.

Market Demand and Future Trends

• Kotlin:

◦ Strong demand in the Android market;

expected to remain essential as

Android evolves.

• Kotlin Multiplatform:

◦ Growing interest as companies look to

reduce code redundancy; future market

penetration depends on ecosystem

maturation.

• Swift:

◦ Continues to dominate iOS and

macOS markets with high demand in

the Apple developer community.

• Flutter:

◦ Rapidly growing in popularity due to

its cross-platform capabilities and

Google’s backing; adoption is rising

among startups and established

companies alike.

• React Native:

◦ Despite some performance trade-offs,

its JavaScript base and mature

community ensure its continued

demand, particularly for rapid

prototyping and projects with web–

mobile convergence.

Figure 2: Graphical Representation of Learning Curve,

Market Trend and Future Scope of Languages/ Platform.

https://doi.org/10.46335/IJIES.2025.10.6.5 e-ISSN: 2456-3463

Vol. 10, No. 6, 2025, PP. 23-27

International Journal of Innovations in Engineering and Science, www.ijies.net

26

Figure 3: Demand and Admired Languages

Figure 4: Current Usage of the Programming Language

RESULT & DISCUSSION

The comparative study reveals several key points:

• Native vs. Cross-Platform Trade-offs:

Native languages like Swift and Kotlin offer

unparalleled performance and integration,

especially in domains like watch and desktop

apps where platform-specific features are

critical. Cross-platform frameworks like Flutter

and React Native provide significant

advantages in code reusability and rapid

development.

• Learning and Adoption:

Flutter and React Native, by virtue of their

modern tooling and simplified development

cycles, attract new developers. Kotlin and

Swift, while requiring a deeper understanding

of native paradigms, offer long-term benefits in

performance and platform integration. Kotlin

Multiplatform, although promising, currently

faces challenges in developer education and

tooling support.

• Market Demand and Future Trends:

Market trends suggest that while native

development remains essential for high-

performance applications, the demand for

cross-platform solutions is rising. Flutter’s

strong performance and appealing developer

experience position it well for future growth,

whereas Kotlin Multiplatform is emerging as a

robust solution for companies invested in both

Android and iOS ecosystems.

Table 1: Compatibility of all Platform and Languages

and their learning curve and Market Demand

Criterion Kotin KMP Swift Flutter ReactNative

Mobile App Excellent Very Good Excellent Very Good Good

Watch App Limited Limited Excellent Emerging Emerging

Desktop
App

Good Emerging Excellent Good Limited

Performanc

e
High High Very High High Moderate=

Learning

Curve
Moderate Steeper Moderate Easy Moderate

Market

Demand
(Now)

High Growing High Rapidly
Growing

High

Market

Demand
(Future)

Steady Promising Steady Promising Steady

https://doi.org/10.46335/IJIES.2025.10.6.5 e-ISSN: 2456-3463

Vol. 10, No. 6, 2025, PP. 23-27

International Journal of Innovations in Engineering and Science, www.ijies.net

27

Table 2: Comparison of the Languages and Platforms

for Performance, Tools and IDEs and Community

Support

Aspect Kotlin/KMP Swift Flutter React Native

Development Fast Very Fast Fast Fast

Tools & IDEs Android Studio Xcode VS Code VS Code

Community Strong/Growing Robust Rapid Growing Extensive

CONCLUSION

This study has provided a detailed comparison of Kotlin

(native), Kotlin Multiplatform, Swift, Flutter, and React

Native across multiple domains and criteria. While

native solutions (Swift and Kotlin) deliver superior

performance and system integration, cross-platform

frameworks (Flutter and React Native) are catching up in

terms of development speed and market appeal. Kotlin

Multiplatform offers an intriguing middle ground by

enabling code sharing without completely sacrificing

native quality. Ultimately, the choice depends on project

requirements, target platforms, and long-term

maintenance considerations.

 FUTURE SCOPE

• Increased Adoption of Cross-Platform

Frameworks:

With companies aiming to reduce maintenance

costs and streamline development, frameworks like

Flutter and Kotlin Multiplatform may see broader

adoption, particularly as tooling and community

support improve.

• Enhanced Native Capabilities:

Swift and Kotlin will continue to evolve,

integrating more features and improving

performance. Their role will remain pivotal in

applications that demand deep system integration,

such as wearables and desktop apps.

• Ecosystem Convergence:

 Hybrid approaches that leverage the strengths of

native and cross-platform paradigms will likely

emerge, offering developers flexibility to optimize

for both performance and speed.

REFERENCES

[1] "Kotlin Programming Language," [Online]. Available:

https://kotlinlang.org/docs/home.html. [Accessed 01 03

2025].

[2] "Apple Inc.," [Online]. Available:

https://developer.apple.com/swift/. [Accessed 20 02 2025].

[3] "Flutter Team," [Online]. Available: https://flutter.dev/docs.

[Accessed 10 02 2025].

[4] "Meta Platforms, Inc.," [Online]. Available:

https://reactnative.dev/docs/getting-started. [Accessed 24 01

2025].

[5] "Google Trends," Google, [Online]. Available:

https://trends.google.com/trends. [Accessed 23 01 2025].

[6] "Flutter vs React Native vs Swift/Kotlin in 5 Minutes,"

YouTube, [Online]. Available:

https://www.youtube.com/watch?v=8yImX_v8f-k. [Accessed

12 02 2025].

[7] M. M. T.F. Bernardes, "Cross-platform mobile development

approaches: a systematic review," IEEE Latin American

Transactions, vol. 14, no. 4, pp. 1892-1898, 2016.

[8] "React Native for Windows," Microsoft, [Online]. Available:

https://github.com/microsoft/react-native-windows.

[Accessed 10 02 2025].

