https://doi.org/10.46335/1J1ES.2025.10.6.5
Vol. 10, No. 6, 2025, PP. 23-27

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

Comparative Analysis of Kotlin, Kotlin
Multiplatform, Swift, Flutter, and React Native in
Cross-Platform App Development

Dr. Neha Guptal, Atharva Gour?, Nishita Raghvendra®, Rohit Manna?,

'Deputy Director, Symbiosis University of Applied Sciences, Indore, India, 453112,

0000-0003-0052-2653

2 Student, Symbiosis University of Applied Sciences, Indore, India, 453112, 2022btcs013@student.suas.ac.in,
3 Student, Symbiosis University of Applied Sciences, Indore, India, 453112, nishitaraghvendra@gmail.com,
4 Student, Symbiosis University of Applied Sciences, Indore, India, 453112, rohitmanna55@gmail.com

Email of Corresponding Author: neha.gupta@suas.ac.in

Received on: 28 April, 2025

Abstract —This paper investigates and compares five
prominent technologies in the modern app development
ecosystem: Kotlin (and its multi-platform extension),
Swift, Flutter, and React Native. The study examines
their application in mobile, watch, and laptop (desktop)
app development with respect to performance, speed,
compatibility, learning curve, and current as well as
future market demand. [1] [2] [3] [4] By analyzing both
technical attributes and ecosystem trends, this research
aims to provide developers and decision-makers with
insights into which framework or language might best
suit different project requirements.

Keywords- Kotlin, multi-platform extension, Swift,
Flutter, and React Native

INTRODUCTION

The rapid evolution of app development platforms has

resulted in a diverse range of languages and frameworks.
Traditionally, native development required separate
codebases for different platforms. [5] Today,
frameworks such as Kotlin Multiplatform, Flutter, and
React Native provide cross-platform capabilities, while
languages like Swift (for i0OS/macOS) and Kotlin (for
Android and beyond) continue to be critical in native
environments. [6] [7] This study outlines the advantages
and trade-offs of each approach:

Revised on: 02 June,2025

23

Published on: 06 June, 2025

. Kotlin: A modern programming language
known for its expressiveness, safety, and strong
support on Android. [8]

. Kotlin Multiplatform (KMP): An extension
of Kotlin that enables code sharing across
platforms without sacrificing native
performance.

. Swift: Apple’s native language designed for
iOS, watchOS, and macOS, known for its
performance and seamless integration within
the Apple ecosystem.

. Flutter: Google’s Ul toolkit that leverages the
Dart language to deliver high-performance,
visually appealing apps across mobile, web, and
desktop.

. React Native: A JavaScript-based framework
that allows developers to build cross-platform
mobile applications with a single codebase.

METHODOLOGY

Our comparative analysis is structured around the
following dimensions:

. Platform Domain: Mobile apps, watch apps,
and laptop/desktop apps.

. Performance: Runtime speed,
management, and Ul responsiveness.

. Development Speed and Compatibility: Ease of
integration, native API support, and cross-
platform consistency.

memory

https://orcid.org/0000-0003-0052-2653
mailto:2022btcs013@student.suas.ac.in
mailto:2023btcs001@student.suas.ac.in
mailto:rohitmanna55@gmail.com
mailto:neha.gupta@suas.ac.in

https://doi.org/10.46335/1J1ES.2025.10.6.5
Vol. 10, No. 6, 2025, PP. 23-27

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

. Learning Curve and Ecosystem Demand:
Developer adoption, community support, and
projected market trends.

1. Platform Domain Support

Mobile Apps

. Kotlin & Kotlin Multiplatform:

o

. Swift:

. Flutter:

)

Kotlin is highly optimized for Android
native development.

Kotlin Multi-platform allows sharing
business logic across Android and iOS
while still enabling native Ul
implementation.

Primarily used for iOS, watchOS, and
macOS, offering seamless integration
with Apple hardware.

. React Native:

o

Watch Apps

Delivers a consistent Ul across
Android and iOS wusing its own
rendering engine.

Leverages nhative components to

provide a near-native look and feel on
both Android and iOS.

. Kotlin/lKMP:

o

. Swift:

Currently less prevalent in watch app

development compared to native
solutions; Kotlin Multiplatform
projects may require additional

libraries for watchOS.

The dominant language for watchOS
apps, offering deep integration with
Apple Watch features.

. Flutter & React Native:

)

While both frameworks have growing
community efforts, native
development (Swift) remains the
standard due to performance and OS-
specific requirements.

Laptop/Desktop Apps

. Kotlin & Kotlin Multiplatform:

o

Kotlin can target JVM-based desktop
applications. Kotlin Multiplatform
extends support to desktop

24

Swift:

Flutter:

o

environments using shared logic and
native wrappers.

Swift is extensively used in macOS
app development.

Recently expanded support for desktop
apps (Windows, macQOS, Linux) with
promising performance.

React Native:

o

Primarily focused on mobile; however,
community-driven projects (e.g., React
Native for Windows/Mac) are
emerging but still less mature.

2. Performance, Speed, and Compatibility

Runtime Performance and Speed

Kotlin (Native):

o

Benefits from direct compilation to
JVM or native binaries; offers
excellent performance on Android.

Kotlin Multiplatform:

o

Swift:

Flutter:

o

By sharing business logic while
maintaining native Ul, it strives for
near-native performance on each
platform.

Highly optimized for Apple devices,
delivering top performance and
efficient memory management.

Uses a high-performance rendering
engine (Skia) to ensure smooth
animations; however, some overhead
exists due to its abstraction layer.

React Native:

o

Offers acceptable performance by
bridging JavaScript with native code;
however, complex Uls and heavy

computations can sometimes
experience latency.
Compatibility
. Kotlin/KMP:

o Excellent for Android; KMP is
evolving to provide robust cross-
platform compatibility.

. Swift:

https://doi.org/10.46335/1J1ES.2025.10.6.5
Vol. 10, No. 6, 2025, PP. 23-27

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

° Offers tight integration within the

Apple ecosystem.
. Flutter:

° Maintains consistent Ul and behavior

across supported platforms.
. React Native:

° Leverages native Ul components but
sometimes suffers from compatibility
issues with newer OS versions or
custom native modules.

Scores (1-10)

o)
i (e e
o

Yot

Jechnologies

Figure 1: Graphical Representation of Performance,
Speed and Compatibility of Languages/ Platform.

3. Learning Curve and Market Demand

Learning Speed

. Kotlin:
° Simple syntax and interoperability
with Java make it relatively easy for

developers with an Android

background.

. Kotlin Multiplatform:
° Introduces additional complexity in

managing shared code and platform-
specific modules.
. Swift:
° Designed to be modern and safe, but
its unique paradigms require time to

master for developers coming from
other languages.
. Flutter (Dart):

Figure 2: Graphical Representation of Learning Curve,
Market Trend and Future Scope of Languages/ Platform.

o Dart is easy to learn, and Flutter’s “hot
reload” speeds up the development
cycle.

. React Native (JavaScript/TypeScript):

° JavaScript's ubiquity makes it
accessible; however, managing the
bridge between JS and native code can
add complexity.

Market Demand and Future Trends

. Kotlin:

° Strong demand in the Android market;
expected to remain essential as
Android evolves.

. Kotlin Multiplatform:

° Growing interest as companies look to
reduce code redundancy; future market
penetration depends on ecosystem
maturation.

. Swift:

° Continues to dominate iOS and
macOS markets with high demand in
the Apple developer community.

. Flutter:

o Rapidly growing in popularity due to
its cross-platform capabilities and
Google’s backing; adoption is rising
among startups and established
companies alike.

. React Native:
° Despite some performance trade-offs,

its JavaScript base and mature
community ensure its continued
demand, particularly for rapid

prototyping and projects with web—
mobile convergence.

25

https://doi.org/10.46335/1J1ES.2025.10.6.5
Vol. 10, No. 6, 2025, PP. 23-27

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

JavaScript: Admired 58.3% —
Desired 39.8%

Comparison of Learning Curve, Market Demand, and Future Trends
5

BB Learning Curve (Ease)
D Market Demand
.

7

Scores (1-10)

) o . - e
e ‘“““qun e it apact 1
e

Technologies

Figure 3: Demand and Admired Languages

HTML/CSS

PY

TS 38.5%
Bash/Shell 33.9%
Java 30.3%
c# 271%
23%
(= 20.3%
PHP 18.2%
PowerShell 13.8%
13.5%
12.6%

9.4%

Assembly

Ruby

Swift

Figure 4: Current Usage of the Programming Language

RESULT & DISCUSSION

The comparative study reveals several key points:

. Native vs. Cross-Platform Trade-offs:
Native languages like Swift and Kotlin offer
unparalleled performance and integration,

26

especially in domains like watch and desktop
apps where platform-specific features are
critical. Cross-platform frameworks like Flutter

and React Native provide significant
advantages in code reusability and rapid
development.

Learning and Adoption:

Flutter and React Native, by virtue of their
modern tooling and simplified development
cycles, attract new developers. Kotlin and
Swift, while requiring a deeper understanding
of native paradigms, offer long-term benefits in
performance and platform integration. Kotlin
Multiplatform, although promising, currently
faces challenges in developer education and
tooling support.

Market Demand and Future Trends:
Market trends suggest that while native
development remains essential for high-
performance applications, the demand for
cross-platform solutions is rising. Flutter’s
strong performance and appealing developer
experience position it well for future growth,
whereas Kotlin Multiplatform is emerging as a
robust solution for companies invested in both
Android and iOS ecosystems.

Table 1: Compatibility of all Platform and Languages
and their learning curve and Market Demand

Criterion Kotin KMP Swift Flutter ReactNative
Mobile App Excellent Very Good Excellent Very Good Good
Watch App Limited Limited Excellent Emerging Emerging
Desktop Good Emerging Excellent Good Limited
App
Performanc High High Very High High Moderate=
e
Learning Moderate Steeper Moderate Easy Moderate
Curve
Market High Growing High Rapidly High
Demand Growing
(Now)
Market Steady Promising Steady Promising Steady
Demand
(Future)

https://doi.org/10.46335/1J1ES.2025.10.6.5
Vol. 10, No. 6, 2025, PP. 23-27

e-1SSN: 2456-3463

International Journal of Innovations in Engineering and Science, www.ijies.net

Table 2: Comparison of the Languages and Platforms
for Performance, Tools and IDEs and Community

Support
Aspect Kotlin/KMP Swift Flutter React Native
Development Fast Very Fast Fast Fast
Tools & IDEs | Android Studio Xcode VS Code VS Code
Community Strong/Growing Robust Rapid Growing Extensive
CONCLUSION

This study has provided a detailed comparison of Kotlin
(native), Kotlin Multiplatform, Swift, Flutter, and React
Native across multiple domains and criteria. While
native solutions (Swift and Kotlin) deliver superior
performance and system integration, cross-platform
frameworks (Flutter and React Native) are catching up in
terms of development speed and market appeal. Kotlin
Multiplatform offers an intriguing middle ground by
enabling code sharing without completely sacrificing
native quality. Ultimately, the choice depends on project
requirements, target platforms, and long-term
maintenance considerations.

FUTURE SCOPE

. Increased Cross-Platform

Frameworks:
With companies aiming to reduce maintenance
costs and streamline development, frameworks like
Flutter and Kotlin Multiplatform may see broader
adoption, particularly as tooling and community
support improve.

. Enhanced Native
Swift and Kotlin will continue to evolve,
integrating more features and improving
performance. Their role will remain pivotal in
applications that demand deep system integration,
such as wearables and desktop apps.

e Ecosystem Convergence:

Hybrid approaches that leverage the strengths of
native and cross-platform paradigms will likely
emerge, offering developers flexibility to optimize
for both performance and speed.

Adoption of

Capabilities:

REFERENCES

[1] "Kotlin Programming Language,"
https://kotlinlang.org/docs/home.html.
2025].

[Online]. Available:
[Accessed 01 03

27

[2

[3]

[4]

[5]

[6]

[7]

(8]

"Meta

"Apple Inc.," [Online]. Available:
https://developer.apple.com/swift/. [Accessed 20 02 2025].

"Flutter Team," [Online]. Available: https://flutter.dev/docs.

[Accessed 10 02 2025].

Platforms, Inc.,” [Online]. Available:
https://reactnative.dev/docs/getting-started. [Accessed 24 01
2025].

"Google Trends,"” Google, [Online]. Available:
https://trends.google.com/trends. [Accessed 23 01 2025].

"Flutter vs React Native vs Swift/Kotlin in 5 Minutes,"
YouTube, [Online]. Available:
https://www.youtube.com/watch?v=8yImX_v8f-k. [Accessed
12 02 2025].

M. M. T.F. Bernardes, "Cross-platform mobile development
approaches: a systematic review," IEEE Latin American
Transactions, vol. 14, no. 4, pp. 1892-1898, 2016.

"React Native for Windows," Microsoft, [Online]. Available:

https://github.com/microsoft/react-native-windows.
[Accessed 10 02 2025].

